Molding CNNs for text: non-linear, non-consecutive convolutions
نویسندگان
چکیده
The success of deep learning often derives from well-chosen operational building blocks. In this work, we revise the temporal convolution operation in CNNs to better adapt it to text processing. Instead of concatenating word representations, we appeal to tensor algebra and use low-rank n-gram tensors to directly exploit interactions between words already at the convolution stage. Moreover, we extend the n-gram convolution to non-consecutive words to recognize patterns with intervening words. Through a combination of lowrank tensors, and pattern weighting, we can efficiently evaluate the resulting convolution operation via dynamic programming. We test the resulting architecture on standard sentiment classification and news categorization tasks. Our model achieves state-of-the-art performance both in terms of accuracy and training speed. For instance, we obtain .1
منابع مشابه
Fast and Accurate Entity Recognition with Iterated Dilated Convolutions
Today when many practitioners run basic NLP on the entire web and large-volume traffic, faster methods are paramount to saving time and energy costs. Recent advances in GPU hardware have led to the emergence of bi-directional LSTMs as a standard method for obtaining pertoken vector representations serving as input to labeling tasks such as NER (often followed by prediction in a linear-chain CRF...
متن کاملFast and Accurate Sequence Labeling with Iterated Dilated Convolutions
Today when many practitioners run basic NLP on the entire web and large-volume traffic, faster methods are paramount to saving time and energy costs. Recent advances in GPU hardware have led to the emergence of bi-directional LSTMs as a standard method for obtaining pertoken vector representations serving as input to labeling tasks such as NER (often followed by prediction in a linear-chain CRF...
متن کاملSEP-Nets: Small and Effective Pattern Networks
While going deeper has been witnessed to improve the performance of convolutional neural networks (CNN), going smaller for CNN has received increasing attention recently due to its attractiveness for mobile/embedded applications. It remains an active and important topic how to design a small network while retaining the performance of large and deep CNNs (e.g., Inception Nets, ResNets). Albeit t...
متن کاملA Closer Look at Spatiotemporal Convolutions for Action Recognition
In this paper we discuss several forms of spatiotemporal convolutions for video analysis and study their effects on action recognition. Our motivation stems from the observation that 2D CNNs applied to individual frames of the video have remained solid performers in action recognition. In this work we empirically demonstrate the accuracy advantages of 3D CNNs over 2D CNNs within the framework o...
متن کاملModify the linear search formula in the BFGS method to achieve global convergence.
<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...
متن کامل